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1. Is a parallisation of an algorithm possible?

2. Case yes: distribute work evenly among processors

However: processors might have to wait for
synchronisation

@ idea: distribute work to inactive processors =
communication, time consuming

3. Many algorithms need communication (expensive
(architecture dependent), high startup time possible, ...)
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Distributing work |

1. Is a parallisation of an algorithm possible?

2. Case yes: distribute work evenly among processors
However: processors might have to wait for
synchronisation

@ idea: distribute work to inactive processors =
communication, time consuming
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Distributing work |

1. Is a parallisation of an algorithm possible?

2. Case yes: distribute work evenly among processors
However: processors might have to wait for
synchronisation

@ idea: distribute work to inactive processors =
communication, time consuming

3. Many algorithms need communication (expensive
(architecture dependent), high startup time possible, ...)
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@ problems mentioned above are machine-dependent.
communication

@ desirable: distribute work evenly and thereby minimising
= problem of partitioning a graph.




A graph is a tuple (N, £) with
e N ={vji=1,...,n}: nodes/ vertices
e & ={e;; = (i,j)| there is an edge between v; and v;}:
edges
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A graph is a tuple (N, £) with

e N ={vji=1,...,n}: nodes/ vertices
e & ={e;; = (i,j)| there is an edge between v; and v;}:
edges

@ subgraph: For N C N: induced subgraph (N, €).
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What is a graph?

Definition: Graph
A graph is a tuple (N, £) with
e N ={yi=1,...,n}: nodes/ vertices
e & ={e;j = (i,j)| there is an edge between v; and v;}:
edges

@ subgraph: For ' C N induced subgraph (V).
@ weights: We = {we (&) € N|e;j € £}: edge weights,
Wy = {w, (v;) € N|v; € N'}: weights of vertices.
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Formulation of the problem

Problem: graph bisection (of an unweighted graph)
Let (\V, €) be a graph. Find (N7, N2), N1UN2 = N with:
1. #N7 = #MN, and
2. #{ejj € &|v; e Ny and v; € b} is minimal under
constraint 1.
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Formulation of the problem

Problem: graph bisection (of an unweighted graph)
Let (\V, €) be a graph. Find (N7, N2), N1UN2 = N with:
1. #Nj = #N> and

2. #{ejj € &|v; e Ny and v; € b} is minimal under
constraint 1.

Problem: graph partitioning (general case)

Let (W, €) be a graph with weights W) and W, p € N and
Pl > v.en Wv(vi). Find partition (Vjli = 1,..., p) such that:

1. U N =W,
2. Yyen; W (vj) equalforalli=1,....p.
8. e, e, vicNiveN; with 1k We (ejj) minimal under 1 & 2.
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o #{e,c&|lvie Nyand v € Np} or
61 €8 ENTLYEN with 12k We (ei) respectively, is called
cut-size.

@ subset of edges separating the graph: edge separator.
@ Also vertex separator possible: Find A’s € AV such that
NJUNLUNg = N,
#Ng small
#NT ~ #N

Ny and A5 are not connected.
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o #{e,c&|lvie Nyand v € Np} or

61 €8 ENTLYEN with 12k We (ei) respectively, is called
cut-size.

@ subset of edges separating the graph: edge separator.
Also vertex separator possible: Find N ¢ \V such that
N{UNUNg = N,

#Ng small
#N1 ~ #N>

Ny and A5 are not connected.
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Remarks

o #{ejc&lvie Njand v, € Ny} or
Ze,,,-es,v,-e/\fk,v,e A with £k We (eij) respectively, is called
cut-size.
@ subset of edges separating the graph: edge separator.
@ Also vertex separator possible: Find s € A such that
N1UNLUNg = N,
#Ng small
#N1 ~ F#N2
N7 and N> are not connected.
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PDEs: Finite element methods

@ Distribution of work: partitioning grid into subgrids
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PDEs: Finite element methods

@ Distribution of work: partitioning grid into subgrids
@ communication: edges of dependency graph
@ problem: partition dependency graph (dual graph)

1 9 14
2 8
10
A . 12
4 6 13
11
5
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@ for simplification: symmetric sparse matrix A € R™".

o

o

o

Calculate y = AX: yi = .4, 20 @jX-

Distribute A row-wise and x correspondingly.

Minimise occurence of: i-th row if A is stored on a
processor, a; # 0, but j-th row is not.

Graph partitioning problem:

n vertices vy, ..., vy for each row, edge between v; & v;
(i #J)if aj # 0.

w,y(v;) = #non-zero elements in i-th row.

We (e,-_j-) =1.
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@ for simplification: symmetric sparse matrix A € R™".
o Calculate y = Ax: y; =3 ;.5 10 8-
o

o

Distribute A row-wise and x correspondingly.

Minimise occurence of: i-th row if A is stored on a
processor, a; # 0, but j-th row is not.

Graph partitioning problem:

n vertices vy, ..., vy for each row, edge between v; & v;
(i # Jj) it @; # 0.

wy(Vv;) = #non-zero elements in j-th row.

We (e,-_/-) =1.
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Sparse Matrix-Vector Multiplication |

@ for simplification: symmetric sparse matrix A € R™*".
o Calculate y = AX: yi = 3.5, 20 @jiXj-
@ Distribute A row-wise and x correspondingly.

@ Minimise occurence of: i-th row if A is stored on a
processor, a; # 0, but j-th row is not.

Manuel Gnann Graph Partitioning



Motivation & examples Parallel programs

Miscellaneous algorithms Graph partitioning
Partitioning without geometric information Examples
Conclusions Time versus quality

Sparse Matrix-Vector Multiplication |

@ for simplification: symmetric sparse matrix A € R™*".
o Calculate y = AX: yi = 3.5, 20 @jiXj-
@ Distribute A row-wise and x correspondingly.

@ Minimise occurence of: i-th row if A is stored on a
processor, a; # 0, but j-th row is not.

@ Graph partitioning problem:
n vertices vy, ..., v, for each row, edge between v; & v;
(i #j)if a; # 0.
wy(v;) = #non-zero elements in j-th row.
We (e,-vj) =1.
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@ Assign components of electronic circuits to circuit boards

such that number of connections between boards is
minimised.

Hypertext browsing

Network layout

Geographic information services

Physical mapping of DNA
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@ Assign components of electronic circuits to circuit boards

such that number of connections between boards is
minimised.

@ Hypertext browsing
@ Network layout




Motivation & examples Parallel programs

Miscellaneous algorithms Graph partitioning
Partitioning without geometric information Examples
Conclusions Time versus quality

Other applications

@ Assign components of electronic circuits to circuit boards
such that number of connections between boards is
minimised.

@ Hypertext browsing

@ Network layout

@ Geographic information services
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Other applications

@ Assign components of electronic circuits to circuit boards
such that number of connections between boards is
minimised.

@ Hypertext browsing

@ Network layout

@ Geographic information services

@ Physical mapping of DNA
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Algorithms?

@ Problem: for non-trivial problems graph partitioning is
NP-complete: For a graph (N, £) no algorithm is known to
solve the problem in O (k") time for any n € N (polynomial
time), where k = #N + #&.
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Algorithms?

@ Problem: for non-trivial problems graph partitioning is
NP-complete: For a graph (N, £) no algorithm is known to
solve the problem in O (k") time for any n € N (polynomial
time), where k = #N + #&.

@ optimal partition too expensive! = heuristics necessary!
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Algorithms?

@ Problem: for non-trivial problems graph partitioning is
NP-complete: For a graph (N, £) no algorithm is known to
solve the problem in O (k") time for any n € N (polynomial
time), where k = #N + #&.

@ optimal partition too expensive! = heuristics necessary!

@ execution time vs. quality
dependent on application.
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Algorithms?

@ Problem: for non-trivial problems graph partitioning is
NP-complete: For a graph (N, £) no algorithm is known to
solve the problem in O (k") time for any n € N (polynomial
time), where k = #N + #&.

@ optimal partition too expensive! = heuristics necessary!

@ execution time vs. quality
dependent on application.

@ slightly different partition size =~ better cut-size
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@ great variety of algorithms (dependent on problem):

o use of geometric information or only the graph itself
e local view versus global view
e deterministic versus random

e application of graph-theoretic methods versus special case

of another problem (e. g. optimisation problem)
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@ great variety of algorithms (dependent on problem):
o use of geometric information or only the graph itself
o local view versus global view
e deterministic versus random
e application of graph-theoretic methods versus special case

of another problem (e. g. optimisation problem)

«0O0>» «F>» «E)r» «




@ great variety of algorithms (dependent on problem):
o use of geometric information or only the graph itself
o local view versus global view
o deterministic versus random
application of graph-theoretic methods versus special case

of another problem (e. g. optimisation problem)
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@ great variety of algorithms (dependent on problem):
e use of geometric information or only the graph itself
e local view versus global view
e deterministic versus random
e application of graph-theoretic methods versus special case
of another problem (e. g. optimisation problem)
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@ Most algorithms: designed for graph bisection
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Overview
Recursive Bisection
Partitioning using geometric information

@ Most algorithms: designed for graph bisection

@ general case: p-partitions with p = 2X very often
(dual-core, quad-core processors)
= recursion: bisect graph and then bisect subpartitions

etc.
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Recursive Bisection: Idea

@ Most algorithms: designed for graph bisection

@ general case: p-partitions with p = 2X very often
(dual-core, quad-core processors)
= recursion: bisect graph and then bisect subpartitions

etc.
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@ Does it deliver (nearly) the same cut-size as a proper
p-way partition?
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By B,

Ay As

By B3

e A, B; are cliques (totally connected), A; having (§ +¢;) n
vertices, B; having (§ — &) n with:
—3+0<e<3-6,6>0ande #0.

. ZiEi =0
i + ¢ # 0 for arbitrary i, j
(3 £ei)neNforalli

A
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Recursive bisection: a counter example |l

Overview
Recursive Bisection
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B, B,

A [ Ae

1 11
Ay As

By Bs

@ 4-way partition decomposes the grap into A; U B;
(f=1,2,3,4) with total cut-size 12.
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Overview
Recursive Bisection
Partitioning using geometric information

B, B,

1 11
Ay As

By Bs

@ 4-way partition decomposes the grap into A; U B;
(f=1,2,3,4) with total cut-size 12.

@ Recursive bisection first decomposes into UN , A; and
U,I-\L1 B;.
However: In the next step one of the A; and one of the B; .
has to be cut.
= cut-size = O (n?).
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Overview
Recursive Bisection
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@ A real-life counter example:

NEJE KK

et

A 2

r =+ ]

EJEIEIE

a) 8 parts, cut-size 128 b) 8 parts, cut-size 116
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@ For many graphs, recursive bisection is good!
1. planar graphs: 2-dimensional graph, edges do not intersect

2. In FEM: graphs with well-shaped simplices
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Recursive bisection: good news

@ For many graphs, recursive bisection is good!

1. planar graphs: 2-dimensional graph, edges do not intersect
2. In FEM: graphs with well-shaped simplices

@ For such graphs recursive bisection produces factor

0, (\/#W) (case 1) or © <<#é\/>11/d> (case 2) bigger

partitions
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@ For many graphs, recursive bisection is good!
1. planar graphs: 2-dimensional graph, edges do not intersect
2. In FEM: graphs with well-shaped simplices

@ For such graphs recursive bisection produces factor

0, (\/#W) (case 1) or © <<#év)11/d> (case 2) bigger

partitions

@ If sizes of subpartitions are allowed to be slightly different
= logarithmic increase with factor O (log p) (or
O (log plog n) with an algorithm running in polynomial time)
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@ graph derived from structure in d-dimensional space
= geometric information (mesh)

@ assumption: vertices close together in euclidian norm
= close together in mesh

@ no use of information about the edges (bad for weighted
edges)

@ algorithms find structure (e. g. hyperplane) dividing space
in two parts.
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Ideas

@ graph derived from structure in d-dimensional space
= geometric information (mesh)

@ assumption: vertices close together in euclidian norm
= close together in mesh

@ no use of information about the edges (bad for weighted
edges)

Manuel Gnann Graph Partitioning



Motivation & examples

Miscellaneous algorithms

Partitioning without geometric information
Conclusions

Overview
Recursive Bisection
Partitioning using geometric information

Ideas

@ graph derived from structure in d-dimensional space
= geometric information (mesh)

@ assumption: vertices close together in euclidian norm
= close together in mesh

@ no use of information about the edges (bad for weighted
edges)

@ algorithms find structure (e. g. hyperplane) dividing space
in two parts.
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Find hyperplane orthogonal too a chosen axis etc. that divides

the points in two equal parts.
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Algorithm: Coordniate bisection

Find hyperplane orthogonal too a chosen axis etc. that divides
the points in two equal parts.

0—0—0—0 c|>—c|> --e- <|:\—o
RN R A e \ e

i V V
' (IJ ' (‘3

o0—0—0—0

@ recursive application: switch between axes = reduction of
aspect-ratio
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Overview
Recursive Bisection
Partitioning using geometric information

Algorithm: Coordniate bisection

Find hyperplane orthogonal too a chosen axis etc. that divides
the points in two equal parts.

foofrtede [ ] ]
o el ensson TG A0
frrprterte - [
O—0—0—0 O——0-=--0—0

@ recursive application: switch between axes = reduction of

aspect-ratio
@ problem: coordinate dependent
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@ improvement: find line L and thereby minimise the squared
distances d; of the vertices to the line.
o L={P+ uu\u € R} with the center of mass
P=(xy)= Z, 1 (X/ yi) and |u| = 1.
@ minimise: 2_1 d? =", =...=u"Muwith
My =3 (X — X)?, Mo = 3, (y/ ¥)? and
Mo = Moy = =32 (Xi —X) (Vi — ¥)-
= calculate eigenvector of M with minimal eigenvalue.

o Fi=(2i,9:)




@ improvement: find line L and thereby minimise the squared
distances d; of the vertices to the line.
° L {P+ au|a € R} with the center of mass

=(x,y) = Z, 1 (X, yi)and |u| = 1.
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Inertial Bisection

@ improvement: find line L and thereby minimise the squared
distances d; of the vertices to the line.
o L={P+ au|a € R} with the center of mass
P= (X y) Z/ 1(X/>yl) and|u|—1
@ minimise: Z, ;A2 =31, =...=u" Muwith
My =32 (xi — ) Moz =Y, (yi — ¥)? and
Mo = Moy = =3 (X — X) (Vi — ¥)-
= calculate eigenvector of M with minimal eigenvalue.

@Pi = (zi,9:)
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@ problem: often geometric information is not available or not
meaningful. = only consider connectivity info of the graph!
@ Features of spectral bisection:

@ no use of geometric information
e operates on mathematical object that represents the graph

e uses floating point operations
e view on the graph as a whole (global view)
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@ Features of spectral bisection:

@ problem: often geometric information is not available or not
meaningful. = only consider connectivity info of the graph!

@ no use of geometric information
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@ problem: often geometric information is not available or not
meaningful. = only consider connectivity info of the graph!
@ Features of spectral bisection:

@ no use of geometric information
e operates on mathematical object that represents the graph
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@ problem: often geometric information is not available or not
meaningful. = only consider connectivity info of the graph!
@ Features of spectral bisection:

@ no use of geometric information
e operates on mathematical object that represents the graph
e uses floating point operations
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@ problem: often geometric information is not available or not
meaningful. = only consider connectivity info of the graph!
@ Features of spectral bisection:

@ no use of geometric information

e operates on mathematical object that represents the graph
e uses floating point operations

e view on the graph as a whole (global view)
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Definition

Definition: Laplacian matrix £

Let G = (N, &) be a graph, n = #A. The Laplacian
L£(G) = (lj) € Sym, (R) is defined as

-1 ifi#jand e €&
lj=<{deg(v;) ifi=j
0 else

with deg (v;) = number of adjacent vertices. The same matrix
with zero diagonal: adjacency matrix A = A(G)
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Definition

Definition: Laplacian matrix £

Let G = (N, &) be a graph, n = #A. The Laplacian
L£(G) = (lj) € Sym, (R) is defined as

-1 ifi#jand e €&
lj=<{deg(v;) ifi=j
0 else

with deg (v;) = number of adjacent vertices. The same matrix
with zero diagonal: adjacency matrix A = A(G)

@ L is unique except for permutation of rows and columns
(orthogonal trafo)

Manuel Gnann Graph Partitioning




Motivation & examples Spectral bisection

Miscellaneous algorithms Generalisations
Partitioning without geometric information The Kernigan-Lin algorithm K/L
Conclusions Outlook

Properties |

Theorem: properties of £
@ L£(G) is real, symmetric with eigenvalues \{ < Ao < ... \j
real and orthogonal choosable eigenvectors u;.
@ )\ >0, £(G) is positive semidefinite.
@ fore:=(1 1 ... 1)Twe have Le = 0, so Ay = 0 with
associated eigenvector e.

@ algebraic (= geometric) multiplicity of zero eigenvalue is
equal to the number of connected components of G. In
particular:

Ao #0 < G is connected

Manuel Gnann Graph Partitioning
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Properties |

Theorem: properties of £
@ L£(G) is real, symmetric with eigenvalues \{ < Ao < ... \j
real and orthogonal choosable eigenvectors u;.
@ )\ >0, £(G) is positive semidefinite.
@ fore:=(1 1 ... 1)Twe have Le = 0, so Ay = 0 with
associated eigenvector e.

@ algebraic (= geometric) multiplicity of zero eigenvalue is
equal to the number of connected components of G. In
particular:

Ao #0 < G is connected

@ )\, is called algebraic connectivity of G. u = u» is called
Fiedler vector.
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Properties |l

@ (small) motivation for the pending algorithm:

Theorem (Miroslav Fiedler)

Let G = (N, &) (with A" = {vq, va, ..., vs}) be a connected
graph, u be its Fiedler vector. For any r > 0 we define

N1 ={v; € N|u; > —r}. Then the subgraph induced by N is
connected. The same holds for r < 0 and

No ={v; e Nu; < —r}.
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Properties |l

@ (small) motivation for the pending algorithm:

Theorem (Miroslav Fiedler)

Let G = (N, &) (with A" = {vq, va, ..., vs}) be a connected
graph, u be its Fiedler vector. For any r > 0 we define

N1 ={v; € N|uj > —r}. Then the subgraph induced by N is
connected. The same holds for r < 0 and

No ={v; e Nu; < —r}.

@ independent of length and sign of the Fiedler vector.
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Properties |l

@ (small) motivation for the pending algorithm:

Theorem (Miroslav Fiedler)

Let G = (N, &) (with A" = {vq, va, ..., vs}) be a connected
graph, u be its Fiedler vector. For any r > 0 we define

N1 ={v; € N|uj > —r}. Then the subgraph induced by N is
connected. The same holds for r < 0 and

No ={v; e Nu; < —r}.

@ independent of length and sign of the Fiedler vector.
@ Using the Fiedler vector: sensible division of the graph.

I T
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The algorithm

Algorithm: Spectral Bisection
Given a connected Graph G = (N, €).
@ Number the vertices and calculate £ = £(G).
@ Calculate the second smallest eigenvalue X\, and
corresponding Fiedler vector u.
@ Calculate median m, of components of u.
@ Choose N7 = {v; € N|u; < my} and
N = {v; € Nlu; > m,} and distribute elements v; with
u; = my so that the partition is balanced.
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@ Heuristics: discrete optimisation problem, physical models,
neural net, ...
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Formulation as a discrete optimisation problem

@ Heuristics: discrete optimisation problem, physical models,
neural net, ...

@ graph G = (N, &) (with n = #N) to be partitioned into
equal sized Ny, Na.
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Formulation as a discrete optimisation problem

@ Heuristics: discrete optimisation problem, physical models,
neural net, ...
@ graph G = (N, &) (with n = #N) to be partitioned into
equal sized Ny, Na.
@ Index vector x € {+1}" with x; = {1 !f Vi €N
1 if vj e NQ
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Formulation as a discrete optimisation problem

@ Heuristics: discrete optimisation problem, physical models,
neural net, ...

@ graph G = (N, &) (with n = #N) to be partitioned into
equal sized N7, N>.

@ Index vector x € {+1}" with x; = 1 !f Vi € N
1 ifv,eNs

@ f(x):= %Z(,J)eg (x;i — x,-)2 denotes number of cut edges.
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Formulation as a discrete optimisation problem

@ Heuristics: discrete optimisation problem, physical models,
neural net, ...

@ graph G = (N, &) (with n = #N) to be partitioned into
equal sized N7, N>.
@ Index vector x € {+1}" with x; = 1 !f Vi €N
1 if Vi € Ng
@ f(x):= %Z(,J)eg (x;i — x,-)2 denotes number of cut edges.

@ some calculation: f(x) = 1x7 Lx.
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Formulation as a discrete optimisation problem

@ Heuristics: discrete optimisation problem, physical models,
neural net, ...

@ graph G = (N, &) (with n = #N) to be partitioned into
equal sized Ny, Na.

1 if vj
@ Index vector x € {+1}" with x; = hvie M
1 if vj e Ng
@ f(x):= %Z(,J)eg (x;i — x,-)2 denotes number of cut edges.

@ some calculation: f(x) = 1x7 Lx.

Discrete optimisation problem

Minimise f(x) = 1xTLx under the constraints x € {+1}" and
xTe = 0 (equal sized).
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@ Still not exactly solvable quickly (NP-complete!)
constraint!

@ idea: not discrete values but continuous values, relax
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Continuous optimisation problem

@ Still not exactly solvable quickly (NP-complete!)
@ idea: not discrete values but continuous values, relax

constraint!
Continuous optimisation problem

Minimise f(z) = 1z £z under the constraints z7z = nand
T
z'e=0.
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Continuous optimisation problem

@ Still not exactly solvable quickly (NP-complete!)
@ idea: not discrete values but continuous values, relax

constraint!
Continuous optimisation problem

Minimise f(z) = 1z £z under the constraints z7z = nand
T
z'e=0.

@ every discrete solution obeys upper restrictions
= lower bound for discrete problem,
hopefully continuous solution good approximation for
discrete case
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@ We have an orthonormal basis of eigenvectors uy, ..., up
; _ 1
with uy =

%e-
@ write z = Z,n 1 oG

e first constraint = Y7 , o =n
@ second constraint = oy =0

@ because in the new basis £ has the form

MM 0 ...0
o O /\2 ) .
L= , we have z = /nu, (unique if
. .0
0O ... 0 X\

A3 > \2) and f(z) = FAan.

«0O0>» «Fr «E» «

it
v
it




@ We have an orthonormal basis of eigenvectors uy, ..
i —
with uy = NG
e write z =", a;u;.
e first constraint = Y7 ;o =n
@ second constraint = a1 =0

@ because in the new basis £ has the form

~7Un

A 0 ... 0
o O /\2 — . .
L= , we have z = y/nu» (unique if
P ¢
0 ... 0 X\

A3 > \2) and f(z) = FAan.

a
n}
v
a
8]
v
a
it
v
a
it
v
it




@ We have an orthonormal basis of eigenvectors uy, ..., up

#e.

e write z =", a;u;.

e first constraint = "7 ; a? = n
second constraint = a4 =0

because in the new basis £ has the form

with uy =

A 0 ... 0
- 0 /\2 . . — ) .
L= , we have z = y/nu» (unique if
P ¢
0 ... 0 M\

A3 > /\2) and f(Z) = %/\gn.
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@ We have an orthonormal basis of eigenvectors uy,
with uy = ﬁe.

e write z =", a;u;.

e first constraint = "7 ; a? = n

@ second constraint = a4 =0

.., Un
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Solution of continuous problem

@ We have an orthonormal basis of eigenvectors uy, ..., u,

with uy = ﬁe.

e write z =7, a;u;.

e first constraint = >°7 ;a2 = n

@ second constraint = a4 =0

@ because in the new basis £ has the form

M 0 ... 0
~ 0 X . .
L=]" , we have z = \/nuo (unique if
R ¢
0 0 A\

A3 > A) and f(2) = 1 han.
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Outlook

Mapping on discrete solution

@ How to map continuous solution on discrete solution?
@ first method: x; = sign (z;). For sign (z;) = 0 always choose

one partition

= no balanced partitions in general
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Mapping on discrete solution

@ How to map continuous solution on discrete solution?

@ first method: x; = sign (z;). For sign (z;) = 0 always choose
one partition
= no balanced partitions in general

@ secon method: emphasis on balance: calculate median z
of the z; and choose

—1 if zi<z
+1 if Zj > V4
Distribute z; = Z such that the balance is preserved.

@ Chan, Ciarlet and Szeto: for any « we have
X =argmin,c 1y pre—g [P — Z|,-
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Mapping on discrete solution

@ How to map continuous solution on discrete solution?

@ first method: x; = sign (z;). For sign (z;) = 0 always choose
one partition
= no balanced partitions in general

@ secon method: emphasis on balance: calculate median z
of the z; and choose

—1 if zi<z
+1 ifz; >z
Distribute z; = Z such that the balance is preserved.
@ Chan, Ciarlet and Szeto: for any « we have

X =argmin,c 1y pre—g [P — Z|,-
@ No high accuracy for u = u» necessary!
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Spectral bisection of weighted graphs |

@ graph G = (N, &) with weighted edges We.
Define weighted Laplacian £ = (/;) through

—we (&) ifi#jandeje&
lij = 2221 We (6/7;() if i :j
0 else

f(x) = 1xT Lx still denotes weight of the cut edges,
xTe=0, Le =0 etc.
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Spectral bisection of weighted graphs |l

e weighted vertices: weights Wiy, define w := (w (v))7_,

and V = diag (w). New problem:

Discrete problem
Minimise f(x) = 1x7Lx subjectto x € {+1}" and x” Ve = 0. J
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Spectral bisection of weighted graphs |l

e weighted vertices: weights Wiy, define w := (w (v))7_,

and V = diag (w). New problem:
Discrete problem
Minimise f(x) = 1x7Lx subjectto x € {+1}" and x” Ve = 0. ’

e Because x"Vx =3, w, (v)x2 =Y, w, (v))=e' Ve
continuous problem:

Continuous problem
Minimise f(z) = 127 £z subject to z"Vz = e Ve and z" Ve = 0. ’
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Spectral bisection of weighted graphs |l

e weighted vertices: weights Wiy, define w := (w (v))7_,

and V = diag (w). New problem:
Discrete problem
Minimise f(x) = 1x7Lx subjectto x € {+1}" and x” Ve = 0.

e Because x"Vx =3, w, (v)x2 =Y, w, (v))=e' Ve
continuous problem:

Continuous problem
Minimise f(z) = 127 £z subject to z"Vz = e Ve and z" Ve = 0. J
e solution: eigenvector corresponding to second smallest
eigenvalue of the generalised eigenproblem £z = A\Vz. =
Because V > 0 equivalent to By = Ay with y = V/2zand - =

B = V-12L£Vv-1/2 B has the same properties as L. b
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@ Already noticed: advantageous to divide a graph into more
than two parts at once.

@ Algorithm to divide graph in 4 or 8 parts at once using 2 or
graph.

3 eigenvectors: spectral quadrisection (or octasection):

e Manhattan metric: weight of edge is multiplied with the

X,'—*T.y,'—f‘l

—

number of bits that differ in the binary representation of the
e quadrisection: partitions N N3, X,y € {1} with
Vie No, i=—1,yi=+1 < vie N, ..
e ... Minimise f(x,y) = 1 (x"Lx + y"Ly) under constraints
e'x=e"y=x"y=0,x,yc{£1}".
e Continuous problem with z"z = w

s
using linear combination of v/nu, and v/nus.
v

w = n can be solved
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Outlook

Spectral quadri- and octasection

@ Already noticed: advantageous to divide a graph into more

than two parts at once.

@ Algorithm to divide graph in 4 or 8 parts at once using 2 or
3 eigenvectors: spectral quadrisection (or octasection):
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Spectral quadri- and octasection

@ Already noticed: advantageous to divide a graph into more
than two parts at once.
@ Algorithm to divide graph in 4 or 8 parts at once using 2 or
3 eigenvectors: spectral quadrisection (or octasection):
e Manhattan metric: weight of edge is multiplied with the
number of bits that differ in the binary representation of the
graph.
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Spectral quadri- and octasection

@ Already noticed: advantageous to divide a graph into more
than two parts at once.

@ Algorithm to divide graph in 4 or 8 parts at once using 2 or
3 eigenvectors: spectral quadrisection (or octasection):

e Manhattan metric: weight of edge is multiplied with the
number of bits that differ in the binary representation of the
graph.

e quadrisection: partitions A, ..., N3, X,y € {£1}" with

xi=—1ly=-1evieNy, xi=-1yi=+1 S VvieN,...
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Spectral quadri- and octasection

@ Already noticed: advantageous to divide a graph into more
than two parts at once.

@ Algorithm to divide graph in 4 or 8 parts at once using 2 or
3 eigenvectors: spectral quadrisection (or octasection):

e Manhattan metric: weight of edge is multiplied with the
number of bits that differ in the binary representation of the
graph.

e quadrisection: partitions A, ..., N3, X,y € {£1}" with

xi=—1ly=-1evieNy, xi=-1yi=+1 S VvieN,...

e ... Minimise f(x,y) = I (x"Lx + y" Ly) under constraints
e'x=e"y=x"y=0,x,yc{£1}".
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Spectral quadri- and octasection

@ Already noticed: advantageous to divide a graph into more
than two parts at once.

@ Algorithm to divide graph in 4 or 8 parts at once using 2 or
3 eigenvectors: spectral quadrisection (or octasection):

e Manhattan metric: weight of edge is multiplied with the
number of bits that differ in the binary representation of the
graph.

e quadrisection: partitions A, ..., N3, X,y € {£1}" with

xi=—1ly=-1evieNy, xi=-1yi=+1 S VvieN,...

e ... Minimise f(x,y) = I (x"Lx + y" Ly) under constraints
e'x=ely=x"y=0,x,yec{+1}".

e Continuous problem with z7z = w’w = n can be solved
using linear combination of \/nu, and v/nus.

s
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@ One of the first algorithms, originally used to optimise
placement of el. circuits on circuit boards
@ improves given partition:
1. possibility: choose random partition and improve it using
K/L, do this several times, take the best result.
2. possibility: use result found by other algorithms and
improve it.

@ K/L has a local view (exchanges neighbouring nodes)
= complements algorithms with a global view (like specitral
partitioning)
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Ideas

@ One of the first algorithms, originally used to optimise
placement of el. circuits on circuit boards
@ improves given partition:
1. possibility: choose random partition and improve it using
K/L, do this several times, take the best result.
2. possibility: use result found by other algorithms and
improve it.
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Ideas

@ One of the first algorithms, originally used to optimise
placement of el. circuits on circuit boards
@ improves given partition:
1. possibility: choose random partition and improve it using
K/L, do this several times, take the best result.
2. possibility: use result found by other algorithms and
improve it.
@ K/L has a local view (exchanges neighbouring nodes)
= complements algorithms with a global view (like spectral
partitioning)
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@ (N, &, We) graph, given subpartitions NaUNg = N.

Definition: diff-value
"4 6 .“\“‘A . d”(f (V..“\’A.J\’B) = Zb%\‘g We (evb) o Za%'\‘A We (ev‘a)
@ amount the cut-size decreases if v is moved to Ng.

Definition: gain-value
ae Na,be Ng: gain(a, b, Na, Ng) := diff(a) + diff(b) — 2w, (€2)

@ amount the cut-size decreases if a and b are swapped.
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@ (N, &, We) graph, given subpartitions NaUNg = N.

VvV E NA . diﬁ(V,NA,NB) = ZbENB We (ev,b) — ZaeNA We (ev’a)

@ amount the cut-size decreases if v is moved to A/g.
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Some notations

@ (N, &, We) graph, given subpartitions NaUNg = N.

Definition: diff-value
v € Na: diff (v, Na,Ng) := ZbENB We (ev,b) = Zae/\/’,q We (€v,2) ’

@ amount the cut-size decreases if v is moved to Vg.

Definition: gain-value
ac Na,be Ng: gain(a, b, Na, N) := diff(a) + diff(b) — 2w, (€a,5) ’

@ amount the cut-size decreases if a and b are swapped.
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The algorithm

Algorithm: Kernigan-Lin (K/L)

@ repeat:
@ Compute the diff-values of all vertices, unmark all vertices, Let
ko := cut-size.
@ For i =1 to min (#N,, #Ng) do:

@ Among all unmarked vertices, find the pair (a;, b;) with gain (a;, b;) = ismax (< 0
possible) and mark a; and b;.
@ For all neighbours v of a; and b; do:

2 |we éev’aii — We éevyblg
2| We (ev,p ) — We(ev,a;
@ ki = ki_q1 — gain(a;, b;) (cut-sizeif ay, . .., ajand by, . . . , bj had been swapped)
@ Find j such that k; = min;k;.
@ Definie Ny := Na\{ai,...,a U {by,..., b},
Ns ::NB\{b1,...,b,'}U{a1,..‘,a/}.
until no further cut-size improvement is achieved.

forv € Mg

diff(v) := diff(v) +
(v ) { forv € Ng
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o~
L a
Original Graph, ko =2

= ability to climb out of local minima:

<

o

First swap, ki =4

Second swap, k; = 3

Result, ky =0

vl

@ K/L does not stop as soon as there the gain is negative!
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K/L at work

@ K/L does not stop as soon as there the gain is negative!
= ability to climb out of local minima:

APy LD

Original Graph, ko =2 First swap, ky =4

el <<

Second swap, k; = 3 Result, ky =0

D)

@ several improvements and variations possible!
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@ more sophisticated geometric partitioning

~ <> coarsen graph

é partition graph

A}

~ project and refine graph
Y
BN

\_>Q=>@//1
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Algorithms not discussed

@ more sophisticated geometric partitioning
@ Greedy and graphgrowing algorithms

~ <z coarsen graph
: partition graph

~=> project and refine graph

x_>{}=>@/j
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Algorithms not discussed

@ more sophisticated geometric partitioning
@ Greedy and graphgrowing algorithms
@ Multilevel Spectral Bisection

~ <z coarsen graph
: partition graph

~=> project and refine graph

x,>{}=>@/j
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Algorithms not discussed

@ more sophisticated geometric partitioning
@ Greedy and graphgrowing algorithms

@ Multilevel Spectral Bisection

@ Multilevel Partitioning

~ <z coarsen graph
: partition graph

~=> project and refine graph

x,>{}=>@/j
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@ distributing work in parallel programs can be often
formulated as a graph partitioning problem

@ graph partitioning is NP-complete = Heuristics necessary

@ Several algorithms portrayed:
@ geometric approaches
@ spectral bisection
o K/L-algorithm
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@ distributing work in parallel programs can be often
formulated as a graph partitioning problem

@ graph partitioning is NP-complete = Heuristics necessary
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Conclusions

@ distributing work in parallel programs can be often
formulated as a graph partitioning problem
@ graph partitioning is NP-complete = Heuristics necessary
@ Several algorithms portrayed:
@ geometric approaches
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Conclusions

@ distributing work in parallel programs can be often
formulated as a graph partitioning problem

@ graph partitioning is NP-complete = Heuristics necessary

@ Several algorithms portrayed:

@ geometric approaches
@ spectral bisection
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Conclusions

@ distributing work in parallel programs can be often
formulated as a graph partitioning problem

@ graph partitioning is NP-complete = Heuristics necessary

@ Several algorithms portrayed:

@ geometric approaches
@ spectral bisection
e K/L-algorithm
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