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Distributing work I

1. Is a parallisation of an algorithm possible?
2. Case yes: distribute work evenly among processors

However: processors might have to wait for
synchronisation
idea: distribute work to inactive processors⇒
communication, time consuming

3. Many algorithms need communication (expensive
(architecture dependent), high startup time possible, ...)
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Distributing work II

problems mentioned above are machine-dependent.
desirable: distribute work evenly and thereby minimising
communication
⇒ problem of partitioning a graph.
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What is a graph?

Definition: Graph

A graph is a tuple (N , E) with
N = {vi |i = 1, . . . ,n}: nodes/ vertices
E =

{
ei,j = (i , j)

∣∣ there is an edge between vi and vj
}

:
edges

subgraph: For N ⊂ N : induced subgraph
(
N , E

)
.

weights: WE =
{

we
(
ei,j
)
∈ N

∣∣ei,j ∈ E
}

: edge weights,
WN = {wv (vi) ∈ N|vi ∈ N}: weights of vertices.
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Formulation of the problem

Problem: graph bisection (of an unweighted graph)

Let (N , E) be a graph. Find (N1,N2), N1∪̇N2 = N with:
1. #N1 = #N2 and
2. #

{
ei,j ∈ E

∣∣vi ∈ N1 and vj ∈ N2
}

is minimal under
constraint 1.

Problem: graph partitioning (general case)

Let (N , E) be a graph with weights WN and WE , p ∈ N and
p|
∑

vi∈N wv (vi). Find partition (Ni |i = 1, . . . ,p) such that:

1. ∪̇p
i=1Ni = N ,

2.
∑

vj∈Ni
wv
(
vj
)

equal for all i = 1, . . . ,p.

3.
∑

ei,j∈E,vi∈Nk ,vj∈Nl with l 6=k we
(
ei,j
)

minimal under 1 & 2.
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Remarks

#
{

ei,j ∈ E
∣∣vi ∈ N1 and vj ∈ N2

}
or∑

ei,j∈E,vi∈Nk ,vj∈Nl with l 6=k we
(
ei,j
)

respectively, is called
cut-size.
subset of edges separating the graph: edge separator.
Also vertex separator possible: Find Ns ⊂ N such that
N1∪̇N2∪̇NS = N ,
#NS small
#N1 ≈ #N2
N1 and N2 are not connected.
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PDEs: Finite element methods

Distribution of work: partitioning grid into subgrids
communication: edges of dependency graph
problem: partition dependency graph (dual graph)
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Sparse Matrix-Vector Multiplication I

for simplification: symmetric sparse matrix A ∈ Rn×n.
Calculate y = Ax : yi =

∑
j:aij 6=0 aijxj .

Distribute A row-wise and x correspondingly.
Minimise occurence of: i-th row if A is stored on a
processor, aij 6= 0, but j-th row is not.
Graph partitioning problem:
n vertices v1, . . . , vn for each row, edge between vi & vj
(i 6= j) if aij 6= 0.
wv (vi) = #non-zero elements in i-th row.
we
(
ei,j
)

= 1.

Manuel Gnann Graph Partitioning



Motivation & examples
Miscellaneous algorithms

Partitioning without geometric information
Conclusions

Parallel programs
Graph partitioning
Examples
Time versus quality

Sparse Matrix-Vector Multiplication I

for simplification: symmetric sparse matrix A ∈ Rn×n.
Calculate y = Ax : yi =

∑
j:aij 6=0 aijxj .

Distribute A row-wise and x correspondingly.
Minimise occurence of: i-th row if A is stored on a
processor, aij 6= 0, but j-th row is not.
Graph partitioning problem:
n vertices v1, . . . , vn for each row, edge between vi & vj
(i 6= j) if aij 6= 0.
wv (vi) = #non-zero elements in i-th row.
we
(
ei,j
)

= 1.

Manuel Gnann Graph Partitioning



Motivation & examples
Miscellaneous algorithms

Partitioning without geometric information
Conclusions

Parallel programs
Graph partitioning
Examples
Time versus quality

Sparse Matrix-Vector Multiplication I

for simplification: symmetric sparse matrix A ∈ Rn×n.
Calculate y = Ax : yi =

∑
j:aij 6=0 aijxj .

Distribute A row-wise and x correspondingly.
Minimise occurence of: i-th row if A is stored on a
processor, aij 6= 0, but j-th row is not.
Graph partitioning problem:
n vertices v1, . . . , vn for each row, edge between vi & vj
(i 6= j) if aij 6= 0.
wv (vi) = #non-zero elements in i-th row.
we
(
ei,j
)

= 1.

Manuel Gnann Graph Partitioning



Motivation & examples
Miscellaneous algorithms

Partitioning without geometric information
Conclusions

Parallel programs
Graph partitioning
Examples
Time versus quality

Sparse Matrix-Vector Multiplication I

for simplification: symmetric sparse matrix A ∈ Rn×n.
Calculate y = Ax : yi =

∑
j:aij 6=0 aijxj .

Distribute A row-wise and x correspondingly.
Minimise occurence of: i-th row if A is stored on a
processor, aij 6= 0, but j-th row is not.
Graph partitioning problem:
n vertices v1, . . . , vn for each row, edge between vi & vj
(i 6= j) if aij 6= 0.
wv (vi) = #non-zero elements in i-th row.
we
(
ei,j
)

= 1.

Manuel Gnann Graph Partitioning



Motivation & examples
Miscellaneous algorithms

Partitioning without geometric information
Conclusions

Parallel programs
Graph partitioning
Examples
Time versus quality

Sparse Matrix-Vector Multiplication II
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Other applications

Assign components of electronic circuits to circuit boards
such that number of connections between boards is
minimised.
Hypertext browsing
Network layout
Geographic information services
Physical mapping of DNA
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Algorithms?

Problem: for non-trivial problems graph partitioning is
NP-complete: For a graph (N , E) no algorithm is known to
solve the problem in O (kn) time for any n ∈ N (polynomial
time), where k = #N + #E .
optimal partition too expensive! ⇒ heuristics necessary!
execution time vs. quality
dependent on application.

slightly different partition size ?⇒ better cut-size
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Overview

great variety of algorithms (dependent on problem):
use of geometric information or only the graph itself
local view versus global view
deterministic versus random
application of graph-theoretic methods versus special case
of another problem (e. g. optimisation problem)
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Recursive Bisection: Idea

Most algorithms: designed for graph bisection
general case: p-partitions with p = 2k very often
(dual-core, quad-core processors)
⇒ recursion: bisect graph and then bisect subpartitions
etc.

Does it deliver (nearly) the same cut-size as a proper
p-way partition?
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Recursive bisection: a counter example I

Ai , Bi are cliques (totally connected), Ai having
(1

8 + εi
)

n
vertices, Bi having

(1
8 − εi

)
n with:

1. − 1
8 + δ ≤ εi ≤ 1

8 − δ, δ > 0 and εi 6= 0.
2.
∑

i εi = 0
3. εi + εj 6= 0 for arbitrary i , j
4.
( 1

8 ± εi
)

n ∈ N for all i
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Recursive bisection: a counter example II

4-way partition decomposes the grap into Ai ∪ Bi
(i = 1,2,3,4) with total cut-size 12.
Recursive bisection first decomposes into ∪N

i=1Ai and
∪N

i=1Bi .
However: In the next step one of the Ai and one of the Bi
has to be cut.
⇒ cut-size = O

(
n2).
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Recursive bisection: a counter example III

A real-life counter example:
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Recursive bisection: good news

For many graphs, recursive bisection is good!
1. planar graphs: 2-dimensional graph, edges do not intersect
2. In FEM: graphs with well-shaped simplices

For such graphs recursive bisection produces factor

O
(√

#N
p

)
(case 1) or O

((
#N

p

)1−1/d
)

(case 2) bigger

partitions
If sizes of subpartitions are allowed to be slightly different
⇒ logarithmic increase with factor O (log p) (or
O (log p log n) with an algorithm running in polynomial time)
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Ideas

graph derived from structure in d-dimensional space
⇒ geometric information (mesh)
assumption: vertices close together in euclidian norm
⇒ close together in mesh
no use of information about the edges (bad for weighted
edges)
algorithms find structure (e. g. hyperplane) dividing space
in two parts.
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Coordniate Bisection

Algorithm: Coordniate bisection
Find hyperplane orthogonal too a chosen axis etc. that divides
the points in two equal parts.

recursive application: switch between axes⇒ reduction of
aspect-ratio
problem: coordinate dependent
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Inertial Bisection

improvement: find line L and thereby minimise the squared
distances di of the vertices to the line.
L =

{
P + αu

∣∣α ∈ R
}

with the center of mass
P = (x , y) = 1

n
∑n

i=1 (xi , yi) and |u| = 1.
minimise:

∑n
i=1 d2

i =
∑n

i=1 = . . . = uT Mu with
M11 =

∑
i (xi − x)2, M22 =

∑
i (yi − y)2 and

M12 = M21 = −
∑

i (xi − x) (yi − y).
⇒ calculate eigenvector of M with minimal eigenvalue.
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Ideas

problem: often geometric information is not available or not
meaningful. ⇒ only consider connectivity info of the graph!
Features of spectral bisection:

no use of geometric information
operates on mathematical object that represents the graph
uses floating point operations
view on the graph as a whole (global view)
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Definition

Definition: Laplacian matrix L
Let G = (N , E) be a graph, n = #N . The Laplacian
L (G) =

(
lij
)
∈ Symn (R) is defined as

lij =


−1 if i 6= j and ei,j ∈ E
deg (vi) if i = j
0 else

with deg (vi) = number of adjacent vertices. The same matrix
with zero diagonal: adjacency matrix A = A (G)

L is unique except for permutation of rows and columns
(orthogonal trafo)

Manuel Gnann Graph Partitioning



Motivation & examples
Miscellaneous algorithms

Partitioning without geometric information
Conclusions

Spectral bisection
Generalisations
The Kernigan-Lin algorithm K/L
Outlook

Definition

Definition: Laplacian matrix L
Let G = (N , E) be a graph, n = #N . The Laplacian
L (G) =

(
lij
)
∈ Symn (R) is defined as

lij =


−1 if i 6= j and ei,j ∈ E
deg (vi) if i = j
0 else

with deg (vi) = number of adjacent vertices. The same matrix
with zero diagonal: adjacency matrix A = A (G)

L is unique except for permutation of rows and columns
(orthogonal trafo)

Manuel Gnann Graph Partitioning



Motivation & examples
Miscellaneous algorithms

Partitioning without geometric information
Conclusions

Spectral bisection
Generalisations
The Kernigan-Lin algorithm K/L
Outlook

Properties I

Theorem: properties of L
L (G) is real, symmetric with eigenvalues λ1 ≤ λ2 ≤ . . . λn
real and orthogonal choosable eigenvectors ui .
λj ≥ 0, L (G) is positive semidefinite.

for e :=
(
1 1 . . . 1

)T we have Le = 0, so λ1 = 0 with
associated eigenvector e.
algebraic (= geometric) multiplicity of zero eigenvalue is
equal to the number of connected components of G. In
particular:

λ2 6= 0 ⇔ G is connected

λ2 is called algebraic connectivity of G. u = u2 is called
Fiedler vector.
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Properties II

(small) motivation for the pending algorithm:

Theorem (Miroslav Fiedler)

Let G = (N , E) (with N = {v1, v2, . . . , vn}) be a connected
graph, u be its Fiedler vector. For any r ≥ 0 we define
N1 = {vi ∈ N|ui ≥ −r}. Then the subgraph induced by N1 is
connected. The same holds for r ≤ 0 and
N2 = {vi ∈ N|ui ≤ −r}.

independent of length and sign of the Fiedler vector.
Using the Fiedler vector: sensible division of the graph.
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The algorithm

Algorithm: Spectral Bisection

Given a connected Graph G = (N , E).
Number the vertices and calculate L = L (G).
Calculate the second smallest eigenvalue λ2 and
corresponding Fiedler vector u.
Calculate median mu of components of u.
Choose N1 = {vi ∈ N|ui < mu} and
N1 = {vi ∈ N|ui > mu} and distribute elements vi with
ui = mu so that the partition is balanced.
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Formulation as a discrete optimisation problem

Heuristics: discrete optimisation problem, physical models,
neural net, ...
graph G = (N , E) (with n = #N ) to be partitioned into
equal sized N1, N2.

Index vector x ∈ {±1}n with xi =

{
1 if vi ∈ N1

−1 if vi ∈ N2

f (x) := 1
4
∑

(i,j)∈E
(
xi − xj

)2 denotes number of cut edges.

some calculation: f (x) = 1
4xTLx .

Discrete optimisation problem

Minimise f (x) = 1
4xTLx under the constraints x ∈ {±1}n and

xT e = 0 (equal sized).
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Continuous optimisation problem

Still not exactly solvable quickly (NP-complete!)
idea: not discrete values but continuous values, relax
constraint!

Continuous optimisation problem

Minimise f (z) = 1
4zTLz under the constraints zT z = n and

zT e = 0.

every discrete solution obeys upper restrictions
⇒ lower bound for discrete problem,
hopefully continuous solution good approximation for
discrete case
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Solution of continuous problem

We have an orthonormal basis of eigenvectors u1, . . . ,un
with u1 = 1√

n e.

write z =
∑n

i=1 αiui .
first constraint⇒

∑n
i=1 α

2
i = n

second constraint⇒ α1 = 0
because in the new basis L has the form

L̃ =


λ1 0 . . . 0

0 λ2
. . .

...
...

. . . . . . 0
0 . . . 0 λn

, we have z =
√

nu2 (unique if

λ3 > λ2) and f (z) = 1
4λ2n.
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Mapping on discrete solution

How to map continuous solution on discrete solution?
first method: xi = sign (zi). For sign (zi) = 0 always choose
one partition
⇒ no balanced partitions in general
secon method: emphasis on balance: calculate median z
of the zi and choose

xi =

{
−1 if zi < z
+1 if zi > z

Distribute zi = z such that the balance is preserved.
Chan, Ciarlet and Szeto: for any α we have
x = argminp∈{±1}n,pT e=0 |p − z|α.
No high accuracy for u = u2 necessary!
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Spectral bisection of weighted graphs I

graph G = (N , E) with weighted edges WE .
Define weighted Laplacian L =

(
lij
)

through

lij =


−we

(
eij
)

if i 6= j and ei,j ∈ E∑n
k=1 we

(
ei,k
)

if i = j
0 else

f (x) = 1
4xTLx still denotes weight of the cut edges,

xT e = 0, Le = 0 etc.
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Spectral bisection of weighted graphs II

weighted vertices: weights WN , define w :=
(
w (vi)

)n
i=1

and V = diag (w). New problem:

Discrete problem

Minimise f (x) = 1
4xTLx subject to x ∈ {±1}n and xT Ve = 0.

Because xT Vx =
∑

i wv (vi) x2
i =

∑
i wv (vi) = eT Ve

continuous problem:

Continuous problem

Minimise f (z) = 1
4 zTLz subject to zT Vz = eT Ve and zT Ve = 0.

solution: eigenvector corresponding to second smallest
eigenvalue of the generalised eigenproblem Lz = λVz.
Because V > 0 equivalent to By = λy with y = V 1/2z and
B = V−1/2LV−1/2. B has the same properties as L.
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i =

∑
i wv (vi) = eT Ve

continuous problem:

Continuous problem

Minimise f (z) = 1
4 zTLz subject to zT Vz = eT Ve and zT Ve = 0.

solution: eigenvector corresponding to second smallest
eigenvalue of the generalised eigenproblem Lz = λVz.
Because V > 0 equivalent to By = λy with y = V 1/2z and
B = V−1/2LV−1/2. B has the same properties as L.
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Spectral quadri- and octasection

Already noticed: advantageous to divide a graph into more
than two parts at once.
Algorithm to divide graph in 4 or 8 parts at once using 2 or
3 eigenvectors: spectral quadrisection (or octasection):

Manhattan metric: weight of edge is multiplied with the
number of bits that differ in the binary representation of the
graph.
quadrisection: partitions N0, . . . ,N3, x , y ∈ {±1}n with

xi = −1, yi = −1⇔ vi ∈ N0, xi = −1, yi = +1⇔ vi ∈ N1, . . .

. . . Minimise f (x , y) = 1
4

(
xTLx + yTLy

)
under constraints

eT x = eT y = xT y = 0, x , y ∈ {±1}n.
Continuous problem with zT z = wT w = n can be solved
using linear combination of

√
nu2 and

√
nu3.
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Ideas

One of the first algorithms, originally used to optimise
placement of el. circuits on circuit boards
improves given partition:

1. possibility: choose random partition and improve it using
K/L, do this several times, take the best result.

2. possibility: use result found by other algorithms and
improve it.

K/L has a local view (exchanges neighbouring nodes)
⇒ complements algorithms with a global view (like spectral
partitioning)

Manuel Gnann Graph Partitioning



Motivation & examples
Miscellaneous algorithms

Partitioning without geometric information
Conclusions

Spectral bisection
Generalisations
The Kernigan-Lin algorithm K/L
Outlook

Ideas

One of the first algorithms, originally used to optimise
placement of el. circuits on circuit boards
improves given partition:

1. possibility: choose random partition and improve it using
K/L, do this several times, take the best result.

2. possibility: use result found by other algorithms and
improve it.

K/L has a local view (exchanges neighbouring nodes)
⇒ complements algorithms with a global view (like spectral
partitioning)

Manuel Gnann Graph Partitioning



Motivation & examples
Miscellaneous algorithms

Partitioning without geometric information
Conclusions

Spectral bisection
Generalisations
The Kernigan-Lin algorithm K/L
Outlook

Ideas

One of the first algorithms, originally used to optimise
placement of el. circuits on circuit boards
improves given partition:

1. possibility: choose random partition and improve it using
K/L, do this several times, take the best result.

2. possibility: use result found by other algorithms and
improve it.

K/L has a local view (exchanges neighbouring nodes)
⇒ complements algorithms with a global view (like spectral
partitioning)

Manuel Gnann Graph Partitioning



Motivation & examples
Miscellaneous algorithms

Partitioning without geometric information
Conclusions

Spectral bisection
Generalisations
The Kernigan-Lin algorithm K/L
Outlook

Some notations

(N , E ,WE) graph, given subpartitions NA∪̇NB = N .

Definition: diff-value

v ∈ NA : diff (v ,NA,NB) :=
∑

b∈NB
we
(
ev ,b

)
−
∑

a∈NA
we (ev ,a)

amount the cut-size decreases if v is moved to NB.

Definition: gain-value
a ∈ NA,b ∈ NB : gain (a,b,NA,NB) := diff(a) + diff(b)− 2we (ea,b)

amount the cut-size decreases if a and b are swapped.
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The algorithm

Algorithm: Kernigan-Lin (K/L)
repeat:

Compute the diff-values of all vertices, unmark all vertices, Let
k0 := cut-size.
For i = 1 to min (#NA,#NB) do:

Among all unmarked vertices, find the pair (ai , bi ) with gain (ai , bi ) = ismax (< 0
possible) and mark ai and bi .
For all neighbours v of ai and bi do:

diff(v) := diff (v) +

2
[
we
(

ev,ai

)
− we

(
ev,bi

)]
for v ∈ NA

2
[
we
(

ev,bi

)
− we

(
ev,ai

)]
for v ∈ NB

ki = ki−1 − gain (ai , bi ) (cut-size if a1, . . . , ai and b1, . . . , bi had been swapped)

Find j such that kj = mini ki .
Definie NA := NA\ {a1, . . . , ai} ∪ {b1, . . . , bi},
NB := NB\ {b1, . . . , bi} ∪ {a1, . . . , ai}.

until no further cut-size improvement is achieved.
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K/L at work

K/L does not stop as soon as there the gain is negative!
⇒ ability to climb out of local minima:

several improvements and variations possible!
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Algorithms not discussed

more sophisticated geometric partitioning
Greedy and graphgrowing algorithms
Multilevel Spectral Bisection
Multilevel Partitioning
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Conclusions

What did we learn?

distributing work in parallel programs can be often
formulated as a graph partitioning problem
graph partitioning is NP-complete⇒ Heuristics necessary
Several algorithms portrayed:

geometric approaches
spectral bisection
K/L-algorithm
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